Time Series Analysis for Quality Improvement: a Soft Computing Approach
نویسندگان
چکیده
Quality improvement provides organizations with significant opportunities to reduce costs, increase sales, provide on time deliveries and foster better customer relationships. The design and manufacturing are among the critical processes for continuous quality improvement. Time series data collected from these processes are the useful source. While there are various techniques to explore these processes, Neural Networks (NN) approach is deemed as a promising alternative. However, as NN is a relatively new approach in quality engineering which is traditionally dominated by statistical analysis, there is still much doubt in its effectiveness compared with statistical modeling. The main focus here then is to construct a statistically reliable neural network model with an appropriate architecture to conduct the time series analysis. The purpose of this paper is thus two-fold. Firstly we develop the statistical interval analysis for neural network models which provide a statistical guide towards a reliable modeling architecture. Secondly, we apply the developed approach for quality improvement in various industries.
منابع مشابه
A Hybrid Neural Network Approach for Kinematic Modeling of a Novel 6-UPS Parallel Human-Like Mastication Robot
Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required ...
متن کاملOnline Monitoring for Industrial Processes Quality Control Using Time Varying Parameter Model
A novel data-driven soft sensor is designed for online product quality prediction and control performance modification in industrial units. A combined approach of time variable parameter (TVP) model, dynamic auto regressive exogenous variable (DARX) algorithm, nonlinear correlation analysis and criterion-based elimination method is introduced in this work. The soft sensor performance validation...
متن کاملA COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES
This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...
متن کاملSoft Computing Based on a Modified MCDM Approach under Intuitionistic Fuzzy Sets
The current study set to extend a new VIKOR method as a compromise ranking approach to solve multiple criteria decision-making (MCDM) problems through intuitionistic fuzzy analysis. Using compromise method in MCDM problems contributes to the selection of an alternative as close as possible to the positive ideal solution and far away from the negative ideal solution, concurrently. Using Atanasso...
متن کاملON THE STATIONARY PROBABILITY DENSITY FUNCTION OF BILINEAR TIME SERIES MODELS: A NUMERICAL APPROACH
In this paper, we show that the Chapman-Kolmogorov formula could be used as a recursive formula for computing the m-step-ahead conditional density of a Markov bilinear model. The stationary marginal probability density function of the model may be approximated by the m-step-ahead conditional density for sufficiently large m.
متن کامل